
1. Introduction to Structure and Union

In C language, structure and union are user-defined data types that allow grouping of different data
types under a single name.
They are used to represent complex data efficiently.

 Structure → Stores multiple values with separate memory
 Union → Stores multiple values with shared memory

2. Need for Structure and Union

They are required to:

 Store related data together
 Improve data organization
 Represent real-world entities
 Simplify complex programs
 Reduce memory usage (union)

3. Structure in C Language

A structure is a collection of variables of different data types, grouped under one name.

Definition

A structure is a user-defined data type that allows storing multiple related values of different types.

4. Declaration of Structure

Syntax
struct structure_name
{
 data_type member1;
 data_type member2;
 ...
};

Example
struct Student

{
 int roll;
 char name[20];
 float marks;
};

5. Declaring Structure Variables

Method 1
struct Student s1, s2;

Method 2 (With Definition)
struct Student
{
 int roll;
 char name[20];
 float marks;
} s1, s2;

6. Accessing Structure Members

The dot operator (.) is used to access structure members.

Example
s1.roll = 101;
printf("%d", s1.roll);

7. Initialization of Structure

Example
struct Student s1 = {101, "Ravi", 85.5};

8. Structure and Arrays

An array of structures is used to store multiple records.

Example
struct Student s[3];

Access:

printf("%s", s[0].name);

9. Structure and Functions

Structures can be:

 Passed to functions
 Returned from functions

Passing Structure
void display(struct Student s)
{
 printf("%d", s.roll);
}

10. Pointer to Structure

Pointers can point to structures.

Syntax
struct Student *p;

Access Members Using Arrow Operator (->)
p->roll;

11. Nested Structure

A structure inside another structure is called nested structure.

Example
struct Date
{
 int day, month, year;
};

struct Student
{
 int roll;
 struct Date dob;
};

12. typedef with Structure

typedef is used to create an alias for structure.

Example
typedef struct Student

{
 int roll;
 float marks;
} STU;

13. Advantages of Structure

 Groups related data
 Improves readability
 Supports complex data handling
 Useful for records and databases

14. Limitations of Structure

 Memory consumption is high
 No direct memory sharing
 Slow comparison

15. Union in C Language

A union is a user-defined data type in which all members share the same memory location.

Definition

Union is a data type that stores different data types in the same memory location.

16. Declaration of Union

Syntax
union union_name
{
 data_type member1;
 data_type member2;
};

Example
union Data
{
 int i;
 float f;

 char c;
};

17. Accessing Union Members

Same dot operator is used.

union Data d;
d.i = 10;

 Only one member holds a valid value at a time.

18. Memory Allocation in Union

 Memory size = size of largest member
 All members share same memory

Example
sizeof(union Data);

19. Difference Between Structure and Union
Feature Structure Union

Memory Separate Shared

Size Sum of all members Largest member

Access All at a time One at a time

Data Safety High Low

20. Structure vs Union (Example)
struct A
{
 int a;
 float b;
};

union B
{
 int a;
 float b;
};

21. Applications of Structure

 Student records
 Employee database
 File handling
 Networking packets
 Operating systems

22. Applications of Union

 Memory-efficient programs
 Embedded systems
 Device drivers
 Interpreters

23. Common Errors

1. Wrong member access
2. Forgetting structure keyword
3. Misuse of union members
4. Incorrect pointer usage

24. Best Practices

 Use structure for safety
 Use union for memory optimization
 Use typedef for readability
 Initialize structures properly

25. Conclusion

Structure and union are powerful features of C language that help in organizing and managing complex
data. While structures provide safety and clarity, unions offer memory efficiency. Understanding both is
essential for system-level and real-world programming.

