1. Introduction to Structure and Union

In C language, structure and union are user-defined data types that allow grouping of different data
types under a single name.
They are used to represent complex data efficiently.

e Structure — Stores multiple values with separate memory
e Union - Stores multiple values with shared memory

2. Need for Structure and Union

They are required to:

Store related data together
Improve data organization
Represent real-world entities
Simplify complex programs
Reduce memory usage (union)

3. Structure in C Language

A structure is a collection of variables of different data types, grouped under one name.
Definition

A structure is a user-defined data type that allows storing multiple related values of different types.

4. Declaration of Structure

Syntax
struct structure_name

{

data_type memberl;
data_type member2;

Example

struct Student



{

int roll;
char name[20];
float marks;

5. Declaring Structure Variables

Method 1

struct Student s1, s2;

Method 2 (With Definition)
struct Student

{

int roll;

char name[20];
float marks;
s1,s2;

6. Accessing Structure Members

The dot operator (.) is used to access structure members.

Example
sl.roll=101;

printf("%d", s1.roll);

7. Initialization of Structure

Example

struct Student s1 = {101, "Ravi", 85.5};

8. Structure and Arrays

An array of structures is used to store multiple records.

Example

struct Student s[3];

Access:

printf("%s", s[0].name);



9. Structure and Functions

Structures can be:

e Passed to functions
e Returned from functions

Passing Structure
void display(struct Student s)

printf("%d", s.roll);

10. Pointer to Structure

Pointers can point to structures.

Syntax

struct Student *p;

Access Members Using Arrow Operator (->)

11. Nested Structure

A structure inside another structure is called nested structure.

Example
struct Date

{

int day, month, year;

b

struct Student

i
int roll;
struct Date dob;

)

12. typedef with Structure

typedef is used to create an alias for structure.

Example

typedef struct Student



{

int roll;
float marks;
STU;

13. Advantages of Structure

e Groups related data

e Improves readability

e Supports complex data handling
e Useful for records and databases

14. Limitations of Structure

e Memory consumption is high
e No direct memory sharing
e Slow comparison

15. Union in C Language

A union is a user-defined data type in which all members share the same memory location.
Definition

Union is a data type that stores different data types in the same memory location.

16. Declaration of Union

Syntax
union union_name

{

data_type memberl;
data_type member2;

Example
union Data

{

inti;
float f;




charc;

17. Accessing Union Members

Same dot operator is used.

union Data d;
di=10;

"1 Only one member holds a valid value at a time.

18. Memory Allocation in Union

e Memory size = size of largest member
e All members share same memory

Example
sizeof(union Data);

19. Difference Between Structure and Union

Feature Structure Union
Memory Separate Shared
Size Sum of all members Largest member
Access All at a time One at a time
Data Safety High Low

20. Structure vs Union (Example)




21. Applications of Structure

Student records
Employee database
File handling
Networking packets
Operating systems

22. Applications of Union

Memory-efficient programs
Embedded systems

Device drivers

Interpreters

23. Common Errors

Wrong member access
Forgetting structure keyword
Misuse of union members
Incorrect pointer usage

BN e

24. Best Practices

Use structure for safety

Use union for memory optimization
Use typedef for readability
Initialize structures properly




25. Conclusion

Structure and union are powerful features of C language that help in organizing and managing complex
data. While structures provide safety and clarity, unions offer memory efficiency. Understanding both is
essential for system-level and real-world programming.



